skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Donglin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Porous organic cages (POCs) represent a new class of microporous materials with an impressive breadth of potential applications. One of their many advantages is the degree of tunability of cage properties, similar to that seen in more established microporous materials like metal‐organic frameworks. In this work, a prototypical POC, CC3, is used to explore the potential to tune cage properties via post‐synthetic dynamic covalent chemistry. Ethylenediamine, the linker used in another POC, CC1, was partially substituted into the CC3 cage structure to varying degrees based on the starting relative molar ratios. The resulting products were investigated for the relative distribution of the two linkers, crystallinity, and surface area. It was found that even when small amounts of other compatible diamine linkers are introduced, they substitute into the existing cages, although some structural products are apparently favored over others within the reactant ratios investigated. 
    more » « less